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Abstract

We survey a series of works on the quantum Hamiltonian learning problem, culminating with the
recent groundbreaking polytime Sum-of-Squares algorithm. We hope that our exposition clarifies the
difficulties of extending techniques in prior work, motivates the algorithm’s use of SoS relaxation, and
frames the theoretical implications of the work with respect to quantum many-body systems and theo-
retical computer science.

1 Introduction

The classical Ising model has become the centerpiece of statistical mechanics, the simplest undirected graphi-
cal model to discuss phase transitions and mean-field theory. For a system of N spins xi ∈ {±1} with pairwise
interactions Jij ∈ R and external field hi ∈ R, the associated Gibbs distribution over system configurations
is given by

µ(x) =
1

Z
exp(−βH(x)), H(x)

∆
= −

∑
i,j

Jijxixj −
∑
i

hixi (1)

where Z ∈ R is the partition function ensuring
∫
µ(x)dx = 1, β is the inverse-temperature of the system, and

H is the Hamiltonian, i.e. a description of the energy of the system for a given configuration x. A natural
question, known as structure learning, asks to learn the entire Hamiltonian H to ℓ∞ error ϵ given samples
from the Gibbs distribution, µ(x). A series of works [Bre15; KM17; VMLC16] have given algorithms that
achieve polytime structure learning for Ising models and other graphical models using optimal sample and
time complexity with respect to N .

However, such classical Hamiltonians, known as Markov random fields, only make up an exponentially
small subset of what are known as quantum Hamiltonians. The quantum Ising model, or transverse field
Ising model, generalizes beyond discrete spins to quantum states |x⟩ ∈ C2 of spin-1/2 particles such that
|x⟩ = a |0⟩+ b |1⟩ for |a|2+ |b|2 = 1, where |0⟩ and |1⟩ are the spin “up” and “down” basis states respectively.
The analog to (1) is the following quantum Hamiltonian.

H = −βJ

∑
i,j

ZiZj + g
∑
j

Xj

 (2)

The algorithms for quantum Hamiltonian learning discussed in this paper rely on majorly classical in-
sights, so it suffices for the classical reader to blackbox certain quantum tools. For the sake of brevity,
quantum operations are represented as Hermitian matrices in the aforementioned standard basis, where the
basis states of a multi-qubit quantum system are formed via tensor product. I,X, Y, Z, in particular, are
known as the Pauli matrices, and we frequently restrict ourselves to working with Hamiltonians with terms
that are Paulis or tensor products of Paulis, as any Hermitian matrix can be decomposed into a linear
combination of such matrices. While we defer the full introduction of quantum information and computa-
tion to the standard text of Nielsen and Chuang [NC10], crucially, the quantum Ising model, and quantum
Hamiltonians more broadly, are exponentially large as the state space of a n-qubit quantum system lives in
CN where N = 2n by the nature of the tensor product: C2 ⊗ · · ·⊗C2. For problems involving Hamiltonians
parameterized by a poly(n) description, any efficient solution must be polynomial with respect to n, meaning
that even writing down H in its matrix form is already infeasible.
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Analogous to the Gibbs distribution µ(x), the Gibbs state for some quantum system with Hamiltonian

H is given by the density matrix ρ = e−βH

Tr[e−βH ]
. Naturally, the quantum Hamiltonian learning problem asks

to use copies, i.e. “samples”, of the Gibbs state to learn Hamiltonians of the form H =
∑m

i=1 λiEi where
λi ∈ [−1, 1] is the interaction strength of term Ei. While the corresponding structure learning problem
involves learning Ei, quantum Hamiltonian learning refers to the setting where {Ei} are distinct and known
while we are asked to find accurate estimates for {λi}.

While the classical Ising model was conceived to study ferromagnetism, quantum Hamiltonian learning is
fundamentally tied to quantum many-body systems of quantum particles that locally interact. Such systems
can become highly entangled and understanding the effective interactions which fix system properties is highly
relevant to our physical understanding of superconductors, superfluidity, and quantum material science.

Eleven days prior to the submission of this work, Google Quantum AI announced Willow [Nev24], a state-
of-the-art quantum chip achieving quantum error correction below the surface code threshold [AAAA+24]
and record performance for random circuit sampling (RCS). With growth in available quantum volume
and multiple industry players, efficient classical verification of quantum advantage is an increasing concern.
Recent cryptography research has yielded simple IP protocols for varying degrees of quantumness [BGKP+23;
BCMV+21] and there is a general excitement in quantum cryptography regarding the explicit construction of
pseudo-random unitaries [MH24]. While a quantum algorithm for learning Hamiltonians is not immediately
relevant, general tools for natural quantum learning problems may prove useful in quantum hardness, the
construction of benchmarks, and broader progress. In fact, prior to the Sum-of-Squares approach of interest
[BLMT24], a prominent survey on quantum learning [AA24] hypothesized that low temperature Gibbs states
may be pseudorandom!

This work frames the acclaimed algorithm of Bakshi et al. [BLMT24] against prior work on classical
Hamiltonian learning, the first sample-efficient learning algorithm of Anshu et al. [AAKS21], and the im-
proved time-efficient algorithm in the high-temperature regime of Haah, Kothari, and Tang [HKT22]. In
the process, we aim to motivate the final construction and proof of the SoS system with respect to sufficient
statistics, Taylor expansion, and other tools used by these preceding works.

2 Classical Hamiltonian Learning

We begin by considering parameter learning for classical Markov random fields. A Markov random field
(MRF) refers to a hypergraph, G = (V = [N ] = {1, . . . , N}, E) with vertices being particles of discrete spin
xi ∈ {±1} for i ∈ [N ] and S ∈ E implying a |S|-way interaction between the respective vertices. Then, we
have the following Gibbs distribution.

µ(x) ∝ exp

(
−β

∑
S∈E

λSx
S

)
(3)

where xS =
∏

i∈S xi and λS ∈ [−1, 1]. For notational convenience, we also define xS = (xi)i∈S .
Given G and T samples from the MRF, we aim to estimate λS . Since the structure, E, is known,

this corresponds to the specific quantum Hamiltonian learning problem where zS 7→
∏

i∈S Zi, a product of
Paulis. We also define Ei to be the set of hyperedges containing i and Ni to be the neighborhood of i,
excluding i. Typically, we are also given some locality guarantee |S| ≤ K and an “average order” parameter

L
∆
= 1

K (1 + maxi∈[N ] |Ni|).
Consolidating folklore learning results [Bre15; KM17; VMLC16], Haah, Kothari, and Tang [HKT22]

explicitly give the following algorithm, with optimal sample and time complexity with respect to N .

Theorem 2.1 (Learning Parameterized MRFs). Given T = exp(O(β)) log(N/δ)/(β2ϵ2) samples from a

low-intersection MRF of the form (3), there exists an algorithm to construct {λ̂S} such that |λ̂S − λS | ≤ ϵ
for all S ∈ E with probability ≥ 1− δ in O(TN) time.

Proof. If an MRF is low-intersection, it follows that L and K are O(1). For vertex v ∈ [N ], define the
following conditional expectation with respect to its neighbors via the Markov property, which holds for
MRFs.

µ(Xv = xv|XNv
= xNv

) = σ
(
q(v)x

)
, q(v)x

∆
= 2β

∑
S∈Ev

λSx
S
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Now, suppose we have estimates {q̂(v)x }v for {q(v)x }v and consider λS . Taking some v ∈ S, for all T ∈ Ev

such that T ̸= S, if T ̸⊆ S, take u ∈ T \ S and place u ∈ Nout, but if T ⊊ S, choose u ∈ S \ T and place
u ∈ Nin. In the classical 2D-lattice Ising model, S is a connected portion of the lattice, Nin = S, and Nout

is the boundary of S; in general, Nin, Nout are disjoint since the former is ⊂ S while the latter is ⊂ Sc. We
then define W = {x ∈ {±1}N |xi = 1∀i ̸∈ Nin ∪ Nout, which is the set of configurations such that all spins

outside the “closure” of S is 1. Then, consider the average 1
2βEx∼W [xNinq

(v)
x ]. Expanding,

1

2β
Ex∼W [xNinq(v)x ] =

[
ExNin

ExNout

[ ∑
T∈Ev

λTx
NinxT

]]
x=1⃗

=

ExNin

∑
T∈Ev,T∩Nout=∅

λTx
NinxT


x=1⃗

=

ExNin

∑
T∈Ev,T∩Nout=∅,T c∩Nin=∅

λTx
T\Nin


x=1⃗

=
[
λSx

S\Nin

]
x=1

= λS

Here, the first equality comes from disjointness and standard rules of conditional expectation. The second
equality uses the fact that any term with T ∩ Nout ̸= ∅ will average to 0. Similarly, for the third equality,
any vertex ̸∈ T but ∈ Nin will average to zero since it will only be present in one of the x··· terms of the
summand. Finally, the fourth equality comes from the fact that all terms have Nin ⊂ T and T ⊂ N c

out,

meaning T = S must be true by nested inclusion, and the final step follows by evaluation. Then, if q̂
(v)
x is

an estimate of q
(v)
x to 2βϵ error, by triangle inequality,∣∣∣∣ 12βEx∼W [xNinq(v)x ]− λS

∣∣∣∣ = 1

2β

∣∣∣Ex∼W [xNin(q̂(v)x − q(v)x )]
∣∣∣ ≤ 1

2β
· 2βϵ · Ex∼W

∣∣xNin
∣∣ ≤ ϵ

since |xNin | = 1. Since |W | ≤ 2|Nin+Nout| ≤ 2d = O(1), this clever averaging trick does not impact the

claimed runtime, and it suffices to estimate q
(v)
x to 2βϵ error.

By Claim 4.2 of Klivans and Meka [KM17], min(1, |x − y|) ≤ exp(|x|+ 3)|σ(x) − σ(y)| for all x, y ∈ R.
Since |q(v)x | ≤ 2βd always, with some technical manipulation, estimating the conditional probability σ(q

(v)
x )

to exp(−2βd)min(0.5, βϵ) error and inverting σ gives an estimate for q
(v)
x to 2βϵ error.

Of course, by conditional expectation rules, σ(q
(v)
x ) reduces to computing µ(XS = xS) for sets S = {v} and

S = Nv ∪{v}. By Lemma 2.1 of Bresler [Bre15], minb∈{±1} ≥ exp(−2βd)/2 which is derived via the Markov
property, Adam’s Law, and Jensen’s inequality. Using a Chernoff bound and some technical algebra, we find
that O(exp(O(β)) log(N/δ)/(β2ϵ2) samples yield good estimates for all of these conditional probabilities.
Since we pick a single v ∈ S for each S and we have constant overhead assuming low-intersection, our time
complexity is O(TN).

In essence, this sub-quadratic algorithm follows from estimating certain conditional marginals, construct-
ing the necessary estimates via clever applications of Markov’s property, and applying standard technical
tools and Chernoff bounds to derive the runtime analysis. Curiously, if we instead desired estimation in the
ℓ2 norm of the parameters λ⃗ = (λS)S∈E with full generality, our sample complexity is poly(N) [AAKS20].

As we will see, the SoS algorithm of Bakshi et al. [BLMT24] will similarly begin by estimating certain
marginals using standard quantum algorithms. While classical Gibbs states satisfy the Hammersley-Clifford
theorem [CH71], commonly known as the Markov property, this argument fails to generalize as the Markov
property does not even approximately hold in the low-temperature quantum Hamiltonian setting [KKB20].
This severely limits the number of clever conditional tricks we can play and forces us to either consider
natively quantum algorithms or a wider set of marginals with classical optimization strategies. The algorithm
of interest lies in the latter.

3 Sample-efficient Quantum Hamiltonian Learning

Since we desire theory for quantum many-body systems which permit local interactions giving way for global
entanglement, we naturally restrict ourselves to what are known as low-intersection Hamiltonians.
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Definition 1 (Low-intersection Hamiltonian). The support supp(Ei) of an operator is the subset of qubits
on which Ei is non-trivial. A Hamiltonian H is K-local if |supp(Ei)| ≤ K for all i. The dual interaction
graph, G = (V,E), is an undirected graph with vertices V = [m] and edge (i, j) ∈ E if and only if supp(Ei)∩
supp(Ej) ̸= ∅. Let d be the maximum degree of G. Then, H is low-intersection if both K and d are O(1).

A low-intersection Hamiltonian implies that interactions occur between a constant number of particles
and each term only involves particles that participate in a constant number of terms. With this in mind, we
begin our discussion of the quantum setting with the formal definition of the problem of interest.

Problem 1 (Quantum Hamiltonian Learning). Let H =
∑m

i=1 λiEi ∈ CN×N be a low-intersection Hamil-
tonian on n qubits with known terms {Ei}i that are distinct, non-identity Pauli operators with coefficients

λi ∈ R such that |λi| ≤ 1. For a fixed ϵ, δ > 0, along with copies of the Gibbs state ρ = exp(−βH)
Tr exp(−βH) at known

inverse temperature β > 0, find estimates {λ̂i}i such that (λ̂i − λi)
2 ≤ ϵ2 for all a ∈ [m], with proability

≥ 1− δ.

This first sample-efficient algorithm of Anshu et al. [AAKS20] considers the slightly modified setting of

estimating λ⃗ in ℓ2 norm, saturating the poly(N) sample complexity bound for classical Hamiltonians.

Theorem 3.1 (Sample-efficient Hamiltonian Learning [AAKS20]). Problem 1 for estimation in the ℓ2 norm
can be solved using

T = O
(
eO(βc)

βc̃ϵ2
·m3 · log

(m
δ

))
copies of the Gibbs state where c, c̃ ≥ 1 are constants depending the Hamiltonian geometry.

Similar to the classical case, the algorithm proceeds by estimating certain local marginals, êi ≈ ei =
Tr[ρEi], which are shown to be sufficient statistics: functions of the data such that the data conditioned on
the statistic no longer depends on the parameters. We then consider the optimization problem over states
constrained to these estimated statistics and seek to maximize the Shannon entropy; specifically, we consider
its dual program.

max
σ

S(σ) s.t. Tr[σEi] = ei ∀i ∈ [m], σ > 0, Tr[σ] = 1. (4)

D⇒ λ∗ =argminλ=(λ1,...,λm) logZβ(λ) + β

m∑
i=1

λiei (5)

≈⇒ λ̂ =argminλ=(λ1,...,λm) logZβ(λ) + β

m∑
i=1

λiêi (6)

where S(σ) = −Tr[σ log σ] is the von Neumann entropy of the state σ.
The solution to this optimization is the maximum entropy estimator, which is the natural least-biased

estimate given the data samples [Jay57; Jay82]. Perhaps inspired by recent work on learning quantum
Boltzmann machines via gradient descent [AARK+18], Anshu et al. [AAKS20] employ stochastic gradient
descent (SGD) to solve the optimization problem in (6).

The proof of correctness and runtime analysis ultimately reduce to proving that the local marginals are
sufficient statistics via Proposition 3.2, bounding the difference between the ideal optimization problem with
exact statistics (5) versus realized optimization problem with estimated statistics (6), and analyzing the
performance of SGD on the given problem. While we omit some of the technical details of the latter, we
focus on the novelty of the former, which motivate the local marginals used in the SoS algorithm of later
interest.

Proposition 3.2 (Sufficiency of Local Marginals [AAKS20]). Consider the Gibbs state ρ(λ) = exp(−βH(λ))
Tr exp(−βH(λ))

for the parameterized Hamiltonian H(λ) =
∑

i λiEi. Let λ and µ be two sets of parameters such that the
local marginals Tr[ρ(λ)Ei] = Tr[ρ(µ)Ei] agree for all i ∈ [m]. Then, ρ(λ) = ρ(µ) meaning λi = µi for all
i ∈ [m].
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Proof. Consider the relative entropy, also known as the Kullback-Leibler divergence, between the two Gibbs
states. Expanding,

DKL(ρ(λ)∥ρ(µ)) = Tr[ρ(µ)(log ρ(µ)− log ρ(λ))] = −S(ρ(µ)) + β · Tr

[
ρ(µ)

∑
i

λiEi

]
+ logZ(λ)

= −S(ρ(µ)) + β ·
∑
i

λiTr [ρ(µ)Ei] + logZ(λ)

= −S(ρ(µ)) + β ·
∑
i

λiTr [ρ(λ)Ei] + logZ(λ)

= −S(ρ(µ)) + (S(ρ(λ))−����logZ(λ)) +����logZ(λ)

By the positivity of KL-divergence, proved via Jensen’s inequality, we then have S(ρ(λ)) ≥ S(ρ(µ)). Taking
DKL(ρ(µ)∥ρ(λ)) with an analogous argument, we have S(ρ(µ)) ≥ S(ρ(λ)), meaning S(ρ(µ)) = S(ρ(λ)).
This implies that DKL(ρ(µ)∥ρ(λ)) = 0, meaning ρ(µ) = ρ(λ) by Jensen’s equality condition, proving the
claim.

For the correctness of optimizing with estimated statistics as constraints, we leverage a key fact that the
log-partition function is strongly convex.

Definition 2. For a convex function f : Rm → R with gradient ∇f(x) and Hessian ∇2f(x), f is said to be
α-strongly convex in its domain if it is differentiable and for all x, y,

f(y)− f(x) ≥ ∇f(x)⊤(y − x) +
1

2
α∥y − x∥22 ⇔ ∇2f(x) ⪰ α · I

Proposition 3.3. logZ(λ) is α-strongly convex for α = e−O(βc)βc′/m on ∥λ∥ ≤ 1 with ∂
∂λi

logZ(λ) = −βei.

Proving Proposition 3.3 is an arduous process of relating the Hessian to a variance which is lower bounded
via a variety of tools including the quantum belief propagation operator [Has07]. While we defer this proof
to Anshu et al. [AAKS20]’s Theorem 28, we are now able to relate (6) to the ideal optimization (5).

Proposition 3.4 (Marginal Error Propagation [AAKS20]). Suppose we have marginal estimates up to error
δ, i.e. |ei − êi| ≤ δ for all i ∈ [m]. Assume that logZ(λ) is α-strongly convex. Then, the error induced by
(6) versus (5) is bounded by

∥λ− λ̂∥2 ≤ 2β
√
mδ

α

Proof. By the nature of λ̂ being the minimizer of the minand in (6),

logZ(λ̂) + β

m∑
i=1

λ̂iêi ≤ logZ(λ∗) + β

m∑
i=1

λ∗
i êi ⇒ logZ(λ̂) ≤ logZ(λ∗) + β

m∑
i=1

(λ∗
i − λ̂i)êi

Then, by Proposition 3.3 and Definition 2 for y = µ̂ and x = µ∗,

logZ(λ̂)− logZ(λ∗) ≥ −β

m∑
i=1

(λ̂′
i − λ∗

i )ei +
α

2
∥λ̂− λ∗∥22

Re-arranging and applying the Cauchy-Schwarz inequality,

�����logZ(λ∗)− β

m∑
i=1

(λ̂i − λ∗
i )ei +

α

2
∥λ̂− λ∗∥22 ≤ logZ(λ̂) ≤�����logZ(λ∗) + β

m∑
i=1

(λ∗
i − λ̂i)êi

α

2
∥λ̂− λ∗∥ ≤ β ·

m∑
i=1

(λ̂i − λ∗
i )(ei − êi)

≤ β∥µ̂− µ∥2 · ∥ê− e∥2

implying ∥λ̂− λ∥2 ≤ 2β
√
mδ

α since ∥ê− e∥2 ≤ δ
√
m by triangle inequality, which proves the claim.
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From here, the sample complexity follows almost directly. Notice from Proposition 3.4 that it suffices
to estimate ei within δ ≤ αϵ

2β
√
m

for ∥λ − λ̂∥2 ≤ ϵ to hold. This marginal estimation is carried out by

modern techniques in the field of quantum tomography. One strategy is to group Hamiltonian terms Ei

into mutually commuting observables which are simultaneously measured [CW20; BBO20]; broadly, work
regarding measurement scheduling, partial tomography, and overlapping tomography are active areas of
research. However, a recent breakthrough regarding shadow tomography [HKP20; Aar18] permits finding all
marginals at once to accuracy δ with O(2O(K) log(m)/δ2) state copies. Substituting α from Proposition 3.3,
this gives a final sample complexity of

O

2O(K) log(m)

(
e−O(βc)βc′

m
· ϵ

2β
√
m

)−2
 = O

(
O
(
eO(βc)

βc̃ϵ2
·m3 · log

(m
δ

)))

For geometrically-local Hamiltonians, m = Θ(N), meaning our algorithm is Oβ,ϵ,δ(N
3 logN) in sample

complexity. By reducing to a quantum state discrimination problem via an ϵ-net type argument [AAKS20],
we can prove the following sample lower bound.

Theorem 3.5 (Sample Complexity Lower Bound on Hamiltonian Learning). The number of copies T of the
Gibbs state for Problem 1 with estimation in the ℓ2 norm is lower bounded by

T ≥ Ω

(√
m+ log(1− δ)

βϵ

)
While this shows tightness up to polynomial factors, prior to the work of Haah, Kothari, and Tang

[HKT22] discussed in Section 4, tightness of this bound in ℓ2 norm was still open. Note that there are two
regimes of large sample complexity. As β → 0, the Gibbs state approaches the maximally mixed state,
independent of λ, increasing the sample complexity via the 1/βc̃ term. As β → ∞, the Gibbs state is near
the ground state space for various choices of λ, resulting in higher sample complexity via eO(βc).

Crucially, this algorithm is not computationally tractable; in fact, even evaluating the minand in (6) for
an SGD iterate involves approximating the log-partition function, logZ(λ), which is NP-Hard [Mon15].

Still, our SoS algorithm of later interest draws strong inspiration from these ideas. Particularly, note that
the only quantum portion of the algorithm regarded estimating the marginals ei via shadow tomography.
The breakthrough algorithm does the same; Bakshi et al. [BLMT24] solely leverage quantumness via the
same shadow tomography result [HKP20] for a wider set of marginals. As in [AAKS20], the remainder of
the algorithm is purely classical.

3.1 Commuting Hamiltonians

In a follow up note, [AAKS21] clarify that computationally efficient structure learning is tractable for com-
muting Hamiltonians on D-dimensional lattices, that is when the commutator [Ei, Ej ] = EiEj − EjEi = 0.
The key insight is to define an effective Hamiltonian HR = − 1

β log TrRc(ρ) for any region R of the lattice

and prove that, beyond a critical temperature [KKB20], this effective Hamiltonian can be decomposed

HR = αRI + hR +Φ

into commuting terms Φ, hR supported on the boundary ∂R and on the region R respectively, followed by an
identity term with αR ∈ R such that ∥Φ∥∞ ≤ 2|∂R|. With this tool, for every term Ei of the Hamiltonian
H, we take the smallest region Ri ⊃ supp(Ei) with ∂Ri∩ supp(Ei) = ∅. Noting that |Ri| ≤ (3k)D, we divide
the {Ri}i into at most (kD)D batches such that the regions in each batch are non overlapping and then
perform tomography to obtain a classical description of the Gibbs state under Hamiltonian hRi

+ Φi. We
then use this classical description to construct an estimate for operator Ei, and with some techincal details,
arrive at a sample complexity of T = eO(β) log(m/δ)/ϵ2 and time complexity of O(mT ), which is polynomial
given m = poly(N).
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4 High-Temperature Tractability

In Remark 4.5, Haah, Kothari, and Tang [HKT22] modify the final bounding step of Anshu et al. [AAKS21]’s
proof of our Proposition 3.3 to yield a sample complexity of O(2poly(β)N2 log(N)/(β2ϵ2)) for estimation in ℓ∞
norm. Even still, compared to the classical setting, this has worse numerator and denominator dependence
in β, with N2 log(N) dependence compared to the logarithmic sample complexity of Theorem 2.1.

Haah, Kothari, and Tang [HKT22] give the first optimal learning algorithm in the high-temperature
regime for both ℓ2 and ℓ∞ coefficient error.

Theorem 4.1 (High-Temperature Algorithm [HKT22]). For low-intersection Hamiltonian H on N qubits,
ϵ > 0, and β < βc, we can learn coefficients of H with ℓ∞ error ϵ and failure probability δ using T =
O( 1

β2ϵ2 log
N
δ ) samples. For learning with ℓ2 error ϵ, we require O( N

β2ϵ2 log
N
δ ) samples, and in both cases,

the time complexity is O(TN).

Theorem 4.2 (High-Temperature Sample Lower Bound [HKT22]). For any ϵ ∈ (0, 1/2], β > 0, and N , there

exists a 2-local Hamiltonian on N qubits that requires sample complexity Ω
(

exp(β)
β2ϵ2 log N

δ

)
and Ω

(
exp(β)
β2ϵ2 N

)
for ℓ∞ and ℓ2 error ϵ respectively, with failure probability δ.

Theorem 4.2 significantly improves the sample complexity lower bound of Theorem 3.5 via a simple 2-
local Hamiltonian construction, a controlling of KL-divergence, and a powerful application of an information-
theoretic result known as Fano’s Lemma. Of course, this implies that the algorithm of Theorem 4.1 is tight,
up to a logN factor in only the ℓ2 error case.

The foundational insight of Theorem 4.1 is that the Taylor series in β of the expectation Tr(Eiρ) converges
in the high-temperature regime, as β being the inverse-temperature is near zero. Following cluster expansion
techniques from [KS20], Haah, Kothari, and Tang [HKT22] rigorously show that the expectation converges
and give an explicit algorithm for computing the Taylor expansion when {Ei} are Pauli operators. Via the
quantum shadow tomography methods used in Anshu et al. [AAKS20], we then estimate êi ≈ ei = Tr(Eiρ)
while also expanding this expectation as a polynomial in {λi} by truncating the respective Taylor series.
This polynomial system is then classically solved via the Newton-Raphson root-finding method which can
be showed to converge in O(log(1/(βϵ))) iterations, which is negligible relative to the problem input.

We focus on the sample complexity bound which prioritizes themes of Taylor expansion, embodied in the
following Lemma.

Lemma 4.3 (High-Temperature Sample Complexity [HKT22]). Suppose {Ei} are traceless and orthonormal
with respect to the Hilbert-Schmidt inner product. Then, for any β such that 100e6(d + 1)8β) ≤ 1, we can
find x ∈ [−1, 1]m such that ∥x− λ∥∞ ≤ ϵ with failure probability δ using

O

(
d

β2ϵ2
log
(m
δ

))
copies of the Gibbs state.

Proof. As in Theorem 3.1, computing êi to error βϵ of ei for all i, with failure probability δ, requires

T = O
(

d
β2ϵ2 log

(
m
δ

))
copies. Let Fi : [−1, 1]m → Rm be the Taylor series expansion of Tr(Eiρ) with respect

to β, truncated at m terms and shifted by êi such that

Fi(x)
∆
= −êi +

m∑
k=1

βkp
(a)
k (x)

Let F(x) = (F0(x), . . . ,Fm(x))⊤ and consider any x such that ∥F(x)∥∞ = O(βϵ). Our algorithm will be to
compute such an x via Newton-Raphson and prove its time complexity and correctness, but since we only
consider sample complexity at the moment, we take m → ∞ and it suffices to show that for all such x, x
must be close to λ.

Of course, we know that x = λ satisfies this inequality, so we aim to use an intermediate value style
argument. Let J = dF be the Jacobian of F such that Jij = ∂jFi. Then, for each i ∈ [m], by multivariate
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mean value theorem, we have some ν(i) ∈ (−1, 1)m such that

Fi(x)−Fi(λ) = (J |ν(i)(x− λ))i ⇒ |xi − λi| =

∣∣∣∣∣∣
∑
j

(J |−1
ν(i))ij(Fj(x)−Fj(x))

∣∣∣∣∣∣
≤ ∥J |−1

ν(i)∥∞→∞(∥F(x)∥∞ + ∥F(λ)∥∞) ≤ 2β−1(2βϵ) = 4ϵ

where we apply triangle inequality with the fact that ∥J(x)−1∥∞→∞ ≤ 2β−1 for m ≥ 1 via Lemma 4.3 of
Haah, Kothari, and Tang [HKT22], proven via the band-diagonal property of J . This proves the claim.

As we waived SGD earlier, we also defer the proof of time complexity and convergence of the Newton-
Raphson method to Haah, Kothari, and Tang [HKT22]’s Section 4. The main tool here is a strong convexity
bound similar to Proposition 3.3 for α = β2/2 in the high-temperature regime. This removal of a factor of
m−1 in α plays a major role in achieving the optimal time and sample complexity.

4.1 Learning from Real-Time Evolution

As an aside, Haah, Kothari, and Tang [HKT22] also show time-optimal Hamiltonian learning from real-time
dynamics.

Theorem 4.4 (Learning Hamiltonians from Real-Time Dynamics [HKT22]). Give a low-intersection Hamil-
tonian H on N qubits and a blackbox unitary U = e−itH for t < tc, we can learn coefficients of H to ℓ∞
error ϵ with failure probability δ using T = O( 1

tϵ2 log
N
δ ) query complexity, of U , and O(NT ) time.

Here, e−itH is the real-time evolution operator which evolves a quantum state according to Hamiltonian
H for time t according to Schrödinger’s equation. Similar to Theorem 4.1, proof of Theorem 4.4 analyzes
the matrix-valued polynomial expansion of UPU† with respect to t.

Overall, this idea of building a polynomial system from estimated and approximate expansions of marginals
is exactly what is used in the SoS algorithm of later interest, though in the low-temperature regime, such a
Taylor expansion fails to converge as β is large. Regardless, the tools like cluster-related arguments which
are used to explicitly construct the Taylor expansion in Haah, Kothari, and Tang [HKT22] are used to bound
relevant terms in some technical details of Bakshi et al. [BLMT24].

5 Efficient Learning at Any Temperature

As we’ve seen, polytime Hamiltonian learning at low temperatures has remained elusive, even though this is
the most important problem regime. Most quantum many-body systems operate at high β, yielding macro-
scopic phenomena [BLMT24], and we typically seek quantum advantage in the low temperature regime as
the high temperature setting is often classically simulable. Yet, partition function computation for Theo-
rem 3.1 is computationally intractable, Taylor expansion for Theorem 4.1 does not converge for high β, and
traditional cluster expansion arguments for Theorem 4.1 also fails.

Theorem 5.1 (Efficient Learning at Low Temperature [BLMT24]). Given ϵ > 0, β ≥ βc, and K-local

Hamiltonian with dual interaction graph of max degree d, there exists an algorithm to estimate {λ̂i}i such

that with failure probability δ, (λ̂i − λi)
2 ≤ ϵ2 for all i ∈ [m] using

O
((

(m6/ϵe
f(K,d)β

) + (f(K, d)/(β2ϵ2))
)
log(m/δ)

)
copies of the Gibbs state with running time

poly(m, log(1/δ))(1/ϵ)e
f(K,d)β

+ f(K, d)(m/(β2ϵ2)) log(m/δ)

where f(K, d) is a positive function depending only on K and d.
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Here, βc is the same critical temperature as Theorem 4.1 such that for β < βc we simply run the optimal
high-temperature algorithm [HKT22].

Of course, nearly three years after the sample-efficient algorithm [AAKS20], Theorem 5.1 was a delightful
shock to the quantum learning community. Given recent hardness hypotheses regarding the low temperature
regime [AA24], not only was Theorem 5.1 suprising in itself, but the particular method, Sum-of-Squares
relaxation, was not expected to yield success.

However, in the context of prior work, Sum-of-Squares seems at least some what motivated. Particularly,
the key insight of Bakshi et al. [BLMT24] is not just to employ Sum-of-Squares but to widen the set of
statistics beyond simply êi ≈ ei = Tr[Eiρ] as both Anshu et al. [AAKS20] and Haah, Kothari, and Tang
[HKT22] had done. Specifically, consider the wider constrain system:

∀i ∈ [m] −1 ≤ λ′
i ≤ 1

H ′ =
∑

i∈[m] λ
′
iEi,

∀P,Q ∈ Plocal, Tr(Qe−βH′
PeβH

′
ρ) = Tr(PQρ)

(7)

where Plocal is the set of Pauli matrices with K-local support. Notice that the true parameters λ′ = λ satisfy
the final constraint by the cyclic property of the trace

Tr(Qe−βH′
PeβH

′
ρ) = Tr

(
Qe−βHPeβH · e−βH

Tr[e−βH ]

)
= Tr(QρP ) = Tr(PQρ)

The third constraint of (7) widens the typical polynomial system involving expansions of Tr[Eiρ]. For
tractability, we must consider approximate low degree polynomial constraints to replace the trace term
involving matrix exponentials e±βH′

; the intuition of adding constraints is to permit these approximations
without failing correctness. We then take this polynomial system in {λ′} and apply a convex relaxation
technique known as Sum-of-Squares. Proving correctness then reduces to constructing these polynomial
approximations and presenting relevant “SoS proofs” for extracting the intended solution out of the relaxed
system.

5.1 Constructing a Polynomial System

Desiring to work with polynomials over C, we begin by relating third constraint of (7) to what is known as
a nested commutator polynomial.

Definition 3 (Nested Commutator Polynomial). For matrices A,B ∈ Cn×n, the nested commutator is

defined as [A,B]k
∆
= [A, [A,B]k−1] for k ≥ 1 and [A,B]0 = B. For polynomial p(x) =

∑d
k=0 akx

k, p(X|A) =∑d
k=0 ak[X,A]k is the respective nested commutator polynomial.

The nested commutator relates to the Hadamard product, or element-wise product. Note that in the
basis where A is diagonal such that Aii = αi,

[A,B] = AB −BA = B ◦ {αi}ij −B ◦ {αj}ij = B ◦ {(αi − αj)}ij

By induction, it follows that [A,B]k = B ◦{(αi−αj)
k}ij meaning p(H ′|P ) = P ◦{p(σi−σj)}ij where σi are

the eigenvalues of H ′. As it turns out, nested commutators relate quite naturally to the central P conjugated
by eβH

′
via the Hadamard formula:

e−βH′
PeβH

′
=

∞∑
ℓ=0

βℓ[H ′, P ]ℓ
ℓ!

= P ◦ {eβ(σi−σj)}ij = (eβx)(H ′|P ) (8)

Thus, via nested commutators, we have shown that reducing our third constraint to a polynomial in {λ′
i}

hinges on a clever approximation of eβx. Specifically, via the band-diagonal property of small support
operations in the basis of H ′ [AKL16], which was also used in the technical detail of Lemma 4.3, it holds
that in the eigenbasis {vi} of H ′,

|Pij | = |v⊤i Pvj | ≤ e−Ω(|σi−σj |)

9



Then,
p(H ′|P )− (eβx)(H ′|P ) = P ◦ {p(σi − σj)− exp(−β(σi − σj))}ij

is the error of our approximation, where each term is weighted inverse exponentially in σi − σj . Thus, we
desire a flat approximation that is strong near 0 and may slowly diverge outside this neighborhood.

Definition 4 (Flat Exponential Approximation). Given ϵ, η ∈ (0, 1) and κ ≥ 1, we say a polynomial p(x)
is a (κ, η, ϵ)-flat exponential approximation if |p(x)− ex| ≤ ϵ for x ∈ [−κ, κ], meaning it is controlled around
0, and |p(x)| ≤ max(1, ex)eη|x|, meaning that it may diverge at most exponentially.

Constructing such polynomials are quite hard and standard Taylor or Chebyshev truncations fail on
the negative tail, which exponentially blows up. Inspired by an idea known as “iterative peeling” used in
Lieb-Robinson bounds [LR72; Has10], a bound used in the technical details of [AAKS20], Bakshi et al.
[BLMT24] product multiple Taylor expansions truncated at varying degrees such that the error tails do not
constructively interfere.

Theorem 5.2 (Construction of a Flat Exponential Approximation). Let sℓ(x) =
∑ℓ

k=0
xk

k! be the degree-ℓ

Taylor truncation of ex. Let pk,ℓ(x) =
∏k

j=1 s2jℓ(x/k) and qk,ℓ(x) = 1+
∫ x

0
pk,ℓ(y)dy such that pk,ℓ, qk,ℓ have

degree (2k+1−1)ℓ and (2k+1−1)ℓ+1 respectively. Then, pk,ℓ, qk,ℓ are (κ, η, ϵ)-flat exponential approximations
for κ ≥ max(1, 5/η) and ℓ ≥ 100(κ+ log κ/ϵ).

The proof of Theorem 5.2 is an arduous exercise in approximation theory, but with it, we are able to
show that Qp(H|p)ρ ≈ Qe−βHPeβHρ when p is a flat approximation of small η. Intuitively, near 0, the
ϵ-control of p counters the large exp(−β(σi − σj)) weight while outside the neighborhood, the exponentially
small weight controls the exponential divergence of p. With this, we loosen the third equality constraint in
(7) to the following polynomial constraint.

∀i ∈ [m] −1 ≤ λ′
i ≤ 1

H ′ =
∑

i∈[m] λ
′
iEi,

∀P,Q ∈ Plocal, |T̃r(Qp(H ′|P )ρ)− T̃r(PQρ)|2 ≤ ϵ2
(9)

where T̃r is the estimated trace via shadow tomography-like procedures [HKP20] which incurs polynomial
sample and time costs.

5.2 Sum-of-Squares Relaxation

We now give a correct algorithm for solving a close variant of (9) via a classical polynomial relaxation
technique known as Sum-of-Squares (SoS).

Definition 5 (Pseudo-Distributions and Expectations). Recall that a degree-ℓ pseudo-distribution is a
finitely-support function D : Rm → R such that

∑
x D(x) = 1 and

∑
x D(x)p(x)2 ≥ 0 for all polynomi-

als p of degree ≤ ℓ/2, where we sum over the support of D. The pseudo-expectation with respect to D, ÊD,

takes any polynomial of degree ≤ ℓ and outputs ÊD[f(x)] =
∑

x D(x)f(x).

Definition 6 (Constrained Pseudo-distributions). Given a system C = {p1 ≥ 0, . . . , pc ≥ 0} of polynomial
inequality constraints of degree ≤ d in m variables and a degree-ℓ pseudo-distribution, D, over Rm, we
say D satisfies A at degree ℓ ≥ 1 if for every S ⊂ [c] and sum-of-squares polynomial q with deg(q) +∑

i∈S deg(pi) ≤ ℓ, we have that ÊD[q
∏

i∈S pi] ≥ 0. Moreover, D approximately satisfies A is ÊD[q
∏

i∈S pi] ≥
−2−nℓ∥q∥

∏
i∈S ∥pi∥ where ∥ · ∥ is the ℓ2 norm of the polynomial coefficients in the standard basis.

SoS effectively relaxes the notion of a distribution over solutions; for certain polynomial systems, a
pseudo-distribution of interest can be efficiently found via semidefinite programming.

Theorem 5.3 (Efficient Computation of Pseudo-distributions). Given a satisfiable system C of r constraints
in m variables such that at least one is of the form ∥x∥2 ≤ 1, there exists a (m + r)O(ℓ)-time algorithm to
output a degree-ℓ pseudo-distribution that approximately satisfies A.
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Given a satisfying pseudo-distribution, SoS algorithms extract the final problem solution from the moment
tensor Ê[(1, x1, . . . , xm)⊗ℓ]. SoS proofs deduce pseudo-distribution properties from constraints via standard
inference rules of addition, multiplication, substitution, and transitivity. The SoS proof system is known to
be sound and complete.

Algorithm 5.1 Learning a Hamiltonian from Gibbs states [BLMT24]

Input: T = (m6/ϵe
f(K,d)β

) log(m/δ) copies of the Gibbs state ρ = e−βH

Tr(e−βH)
for an unknown low-intersection

Hamiltonian H =
∑

a λaEa with known terms {Ea}.

Operation:

1. Set ϵ0 = ϵ10
CK,d

m3 where CK,β is a sufficiently large constant depending only on K, d. Set ϵ =
2CK,β log(1/ϵ), ℓ1 = 4K. Define A = P

4CK,dβℓ0
,B = Pℓ1 .

2. For all A1, A2, A3 ∈ A, compute estimates T̃r(A1A2A3ρ) of Tr(A1A2A3ρ) to ϵ0 error via [HKP20].

3. Consider the following constraint system:

Cλ′ =



−1 ≤ λ′
i ≤ 1, ∀i ∈ [m],

H ′ =
∑

i∈[m] λ
′
iEi,∣∣∣T̃r(A1A2(H

′ρ− ρH ′)
)∣∣∣2 ≤ ϵ20, ∀A1, A2 ∈ A,∣∣∣T̃r(B2qCK,dβ,ℓ0(−βH ′|B1)ρ

)
− T̃r(B1B2ρ)

∣∣∣2 ≤ ϵ2, ∀B1, B2 ∈ B.

4. Compute a degree-O(2CK,dβℓ0) pseudo-distribution Ê consistent with Cλ′ ;

Output: λ̂ = Ê[λ′].

As pictured in Algorithm 5.1 5.1, we set up a polynomial constraint system Cλ′ very similar to (9). With
polynomials of degree at most O(2O(β)ℓ0), we then compute a valid degree-O(2O(β)ℓ0) pseudo-distribution

Ê and compute Ê[λ′] via the moment tensor to obtain our estimates. By the soundness of SoS, it suffices to
give a degree-O(2O(β)ℓ0) SoS proof that Cλ′ implies correctness.

Theorem 5.4 (SoS Proof of Identifiability [BLMT24]). For any i ∈ [m], given Cλ′ , there is a degree-
O(2O(β)ℓ0) SoS proof that {(λi − λ′)2 ≤ 2CK,dβϵ}.

This proof of Theorem 5.4 is highly non-trivial. Broadly, the proof requires frequently translating be-
tween polynomials and nested commutators. Bakshi et al. [BLMT24] begin by proving various smaller tools
regarding bivariate nested commutators, continuing to a proof that Tr([H,H ′](H ′ρ−ρH ′)) is small, implying
that [H,H ′] is small, which is used to argue that (λi−λ′)2 is small. Fundamentally, the particular constraints
of C with respect to the general structure of (9) are constructed in order to aid the SoS proofs and not vice
versa. The first trace inequality constraint in particularly is entirely a proof tool. With these changes in the
constraint system, a proof of feasibility is also required, though external to SoS.

Theorem 5.5 (Proof of Feasibility [BLMT24]). Cλ′ is satisfied when λ′ = λ, provided |T̃r(A1A2A3ρ) −
T̃r(A1A2A3ρ)| ≤ ϵ0 for all A1, A2, A3 ∈ A.

Proof. Since λ′ = λ, we have thatH ′ = H. SinceH commutes with its Gibbs state ρ, Tr(A1A2(Hρ−ρH)) = 0
meaning the first trace inequality constraint of Cλ′ is satisfied. For the remaining trace constraint, in the
eigenbasis of H,

Tr((B2q(−βH|B1)−B1B2)ρ) = Tr((B2(B1 ◦ {q(−β(σi − σj))}ij −B1B2)ρ)

≈ Tr((B2(B1 ◦ {exp(−β(σi − σj))}ij −B1B2)ρ)

= Tr((B2ρB1ρ
−1 −B1B2)ρ) = Tr(B2ρB1 −B1B2ρ) = 0

11



where we use the fact that q is a strong flat exponential approximation and B1◦{exp(−β(σi − σj))} = ρB1ρ
−1

by matrix multiplication since ρ is the Gibbs state of H. We defer the specifics of propagating these
polynomial approximation errors to Bakshi et al. [BLMT24].

5.3 Reducing SoS Search Space

For the target runtime of Theorem 5.1, we leverage a technique known as linearization [Mar21] to reduce the
degree of our SoS system. This derives from the key observation that only a specific family of monomials,
generated via cluster expansion ideas [KS20; HKT22], are involved in the SoS proof of identifiability. From
intermediary results in the SoS proof, Bakshi et al. [BLMT24] derive that the number of relevant monomials

is at most m · (1/ϵ)10
CK,dβ

. This lends itself well to a recent SoS optimization result.

Theorem 5.6 (Degree Reduction via Linearization [Mar21]). Let p : Rn → R be a multivariate polynomial
of degree ≤ t, and let C = {q1 ≥ 0, . . . , qc ≥ 0} be a system of polynomial equalities such that C ⊢ {p(x) ≥ 0}
and assume the proof can be written as

∑
i ri(x)

2
∏

j∈Si
qj(x) where there are at most M distinct sets Si ⊆ [c]

and at most N distinct monomials in p(x). Then, we can write a system C′ in x and some auxiliary variables
such that C′ is feasible when C is feasible, C′ ⊢ {p(x) ≥ 0}, and we can compute a pseudo-expectation for A′

in O(c+M + (tN)3) time.

Applying Theorem 5.6, Bakshi et al. [BLMT24] arrive at the complexity bounds of Theorem 5.1.

6 Discussion

While it pains us to withhold proof detail from our discussion of the SoS algorithm, we hope it comes at
the benefit of a well-motivated framing of quantum learning and its relevant tools. From our understanding,
strong sample and time complexity lower bounds are unknown in the low-temperature regime, so we are
excited to see greater interest in the setting. While SoS is classical learning theory technique, the meta-
algorithm has been used to study best state separation [BKS17] and fermionic Hamiltonians [HO22; Has23]
in recent years.

Generally, quantum learning is an emergent field, and questions in state tomography and many-body
systems are quite exciting. In fact, some recent work considers the relation between PAC-learning with
quantum algorithms and quantum circuit lower bounds [AGGO+22] in complexity theory which is quite cu-
rious. Regardless, we highly recommend that motivated readers explore the exposition and proofs presented
by Bakshi et al. [BLMT24].
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