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Abstract

Given the near-exhaustion of available English internet corpora for pre-training,
traditional scaling laws have ended and will remain plateaued unless synthetic data
proves viable. A recent phenomenon known as model collapse has evidenced a
performance degradation for certain classes of models when trained on synthetic
datasets. This work surveys the extent and limitations of empirical and theoretical
arguments for model collapse as well as the recent universalization of the π2/6
argument by Dey and Donoho (2024). We reproduce relevant experimentation and
proof while analyzing the implications for pre-training and model scaling, given
the present deployment of large-scale generative models.

1 Introduction

On December 13, 2024, Ilya Sutskever confirmed an ongoing suspicion of top machine learning
scientists for the last month. “Pre-training as we know it will unquestionably end," he declared,
comparing the saturation of real training data to the “fossil fuel of AI" in his NeurIPS presentation.
Literature has long understood real training data as a “tragedy of the commons," and early forecasts
from Villalobos et al. (2022) indicated that all high-quality English data might be exhausted by 2028,
provided scaling laws at the time continued.

Figure 1: Projected Training Data Exhaustion (Villalobos et al., 2022)

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



While a common crawl of the internet yields ≈ 1.3× 1014 tokens (Villalobos et al., 2022) despite
Llama 70B only pre-training on ≈ 1.5 × 1013 tokens (Touvron et al., 2023), accounting for data
pre-processing needs, we’ve already surpassed the initial data exhaustion projection of Figure 1.
It follows that future efforts to scale pre-training involve either better use of existing data or the
generation and incorporation of synthetic data into the training set. While the former is possible,
beyond exploiting multi-modal pre-training data (Ding et al., 2023), expected gains from better
analysis of existing corpora are marginal. Further, by the “No Free Lunch Theorem," it is reasonable
to believe that the latter comes with a caveat. This caveat is model collapse.

2 Background

Broadly, synthetic data is a potential solution for remedying data sparsity and diversity concerns
(H. Chen et al., 2024). A notable example in real-world decision making is self-driving; while
companies, ex. Tesla, are able to record large quantities of high-quality training data for standard
driving conditions, data for inclement weather and a wide variety of emergency scenarios are scarce.
Training data generated from real-world-driven world models are hoped to fill this gap (Wang et
al., 2023), and similarly, synthetic data is hoped to build more complete datasets for real-world
applications.

However, data poisoning from existing generative models is a simultaneous concern. Given the
unprecedented progress in large language models which are now deployed at scale (Mohamadi et al.,
2023), the proportion of real data with respect to a common internet crawl is declining. Naturally, as
users post generative-inspired text, media from diffusion models, and more, data poisoning worsens.
While there do exist substantive efforts to distinguish between synthetic and generative data, future
researchers will undeniably be faced with the harsh reality of indistinguishably poisoned data sets.
However, this view seems to be at odds with the former; if synthetic data assists training, why is data
poisoning even a concern to begin with?

Crucially, synthetic data does not universally improve training, but rather must be carefully used
in tandem with real data to improve performance. This balancing act is heavily dependent on the
model and problem space, with experimentalists observing drastic effects in certain settings. A slew
of works including Alemohammad et al. (2023) initially noted declined performance in generative
image models which were trained in a self-consuming loop.

Figure 2: Self-Consuming Training of StyleGAN-2 (Alemohammad et al., 2023)

Particularly, while generation t = 1 is trained on the input data distribution, generation t ≥ 2
is obtained via a training set synthesized solely from the trained model at generation t − 1. As
pictured in Figure 2, one of the initial model collapse experiments with StyleGAN-2, as the model
generation increases, cross-hatched artifacts are progressively amplified in each new generation.
While such deficiencies in the generative image setting were known even prior to the diffusion era,
only recently have researchers been able to make theoretical headway toward a rigorous treatment of
model collapse.
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Figure 3: Self-Consuming Training, with 10% Preservation, of OPT-125m (Shumailov et al., 2024)

As in Figure 3, Shumailov et al. (2024) famously studied the language model settings, finding that
OPT-125m (Zhang et al., 2022) when trained in a self-consuming fashion yields an increasing tail
mass as the generation increases, meaning subsequent generations begin “misperceiving reality"
based on ancestral outliers. While Shumailov et al. (2024) also study Stable Diffusion (Rombach
et al., 2022) and ChatGPT (Gozalo-Brizuela and Garrido-Merchan, 2023), the authors pivotally
introduce the first theoretical handhold: proven collapse in the Gaussian setting.

3 Proving Collapse

3.1 Gaussians with Sample Estimators

Suppose we want to learn some 1D Gaussian X0 ∼ N (µ, σ2) and consider the following iterative
process via parameter point estimates. For all i ≥ 1,
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meaning Ti samples from the estimated distribution at generation i are used to compute the parameter
estimates, that is the sample mean and sample variance, for the subsequent generation. From literature,
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i ∼ N (0, 1). Taking Tj = T for all j such that n is large
and expanding to second order in 1/Ti, Shumailov et al. (2024) find that
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meaning that the variance diverges linearly in g. By taking the Wasserstein-2 distance between the
g-th estimated distribution and the original data distribution,
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2(N (µ, σ2),N (µg, σ
2
g)) = ∥µg − µ∥2 + ∥σg − σ∥2

we are able to measure the fidelity of the point estimates µg, σ
2
g . Doing so, Shumailov et al. (2024)

find that
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meaning that the risk due to finite sampling, Eµg,σ2
g
[Rg

W2
], does not diverge if and only if Tg increases

superlinearly in g by the p-series test.

3.1.1 Multidimensional Gaussians

Generalizing the above approach, consider any self-consuming process on Gaussians such that

µi =
1

Ti−1

∑
j

Xj
i−1 + ϵi(X

j
i−1), EXj

i−1
(Σi) = Σi−1, E[ϵi|µi−1,Σi−1] = 0

where ϵi+1 are deviations from the typical unbiased sample estimators. Shumailov et al. (2024) prove
the following risk lower bound, provided Cov(ϵi, µi|µi−1,Σi−1) = 0:

E[Rg
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g−1∑
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which recovers (2). Thus, for sample sizes Tg that are constant with respect to g, the Gaussian setting
with point estimates yields model collapse.

3.2 Linear Model with Ridge Regression and Gaussians

While the aforementioned Gaussian example theoretically validates the intuition of compounding
finite sample errors across each subsequent generation, Dohmatob, Feng, and Kempe (2024) find that
the following simple regression setting is rich enough to describe a range of model collapse regimes.

(Xk)i
i.i.d.∼ N (0,Σ), (Ek)i

i.i.d.∼ N (0, σ2
k), ŵk = Fit(Xk−1, Y k−1), Y k

∆
= Xkŵk + Ek

where ŵk, w0 ∈ Rd, (Xk)i denotes the i-th row of design matrix Xk ∈ RTk×d, and Y k, Ek ∈ RTk .
Here Fit(Xk, Yk) = RX⊤

k Yk/Tk is the ridge estimator, R = (Σ̂ + λId)
−1 is the resolvent, and

Σ̂ = XkX
⊤
k /Tk is the sample covariance matrix.

Figure 4: Theoretical Framework for Regression

Pictured end-to-end in Figure 4, the self-consuming process begins with data generated from the true
weight w0 and at the k-th generation performs ridge regression on a sample of Tk points from the
distribution fixed by ŵk to derive ŵk+1. For simplicity, we take Tk = T0, σk = σ0 for all k ≤ g − 1
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and denote Tg = T, σg = σ, assuming the under-parameterized regime of T0 ≥ d+ 2. By standard
results (Hastie et al., 2022), the classical ridge regression on the true data distribution yields:

Eclean
test

∆
= Bias + Var, Bias

∆
= E∥Σ̂Rw0 − w0∥2Σ, Var

∆
=

σ2

T
· TrΣR2Σ̂

which corresponds to the test error of generation k = 1. Dohmatob, Feng, and Kempe (2024) show
that after g generations of self-consuming training,

Etest(ŵ
pred
g ) ≃ Eclean

test + gσ2
0ρ, ρ

∆
=

1

T0 − d− 1
ETrΣ−1Σ̂RΣΣ̂R (3)

Of course, in the low-dimensional limit for fixed d as T → ∞, Σ̂k = X⊤
k Xk/Tk → Σ meaning that

in the under-parameterized regime,

ρ ≃ df2(λ)

T0 − d
, dfm(λ)

∆
= TrΣm(Σ + λId)

−m

where dfm(λ) is known as the m-th order degree of freedom of Σ which is ≤ d always. It follows
that the test error after g generations is the classical test error plus an additive factor that scales
linearly with g. In the more realistic RMT limit (Wei, W. Hu, and Steinhardt, 2022) where T, d → ∞
such that d1/C ≃ T ≃ dC and ∥Σ∥op, ∥Σ−1∥op = O(1), meaning log d, log T are of the same order,
Dohmatob, Feng, and Kempe (2024) derive that in the under-parameterized regime,

ρ =
TrΣ4(Σ + κ0I)

−2(Σ + κI)−2

T0 − df2(κ0)
+

κ2TrΣ2(Σ + κ0I)
−2(Σ + κI)−2

T0 − df2(κ0)
· df2(κ)

T − df2(κ)

where κ0
∆
= κ(0, T0), κ = κ(λ, T ), and κ(λ, T ) satisfies the fixed point equation κ(λ, T ) − λ =

κ(λ, T ) · df1(κ(λ, T ))/T . The calculation of this trace term ρ follows the standard application of
RMT tools to the anisotropic ridge regression setting, (Bach, 2024).

Dohmatob, Feng, and Kempe (2024) extend their results to the adaptive ridge regression setting where
λ = λ(T ) ≍ T−ℓ for some fixed ℓ ≥ 0 and also note that similar calculations apply to the kernel
setting where x is replaced with a feature map induced by a kernel K. Having proven model collapse
via a linear test error lower bound in the generation number g, Dohmatob, Feng, and Kempe (2024)
argue that this degradation suggests that large language models will pollute the web till learning is no
longer possible from un-curated online data.

4 Accumulation

While Shumailov et al. (2024) and Alemohammad et al. (2023) do consider settings in which limited
data from generations prior to k− 1 is used to augment training the k-th generation, a major criticism
of recent literature propounding model collapse is the impractical nature of self-consuming training.
In solely self-consuming loops, information from the initial dataset is bound to be lost while finite
sample errors are amplified across each generation, since no meaningful reference to the original data
is made beyond generation 1.

Figure 5: Settings for Studying Model Collapse (Gerstgrasser et al., 2024)
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In the real world, generative outputs pollute the common crawl via accumulation, not replacement;
while the real training data diminishes in proportion, as portrayed in Figure 5, it remains available for
training at any generation, potentially allowing finite sample errors to be corrected to an extent in the
generational limit.

4.1 Linear Model with Ridge Regression and Gaussians

Astonishingly, Gerstgrasser et al. (2024) demonstrate that accumulating data mitigates model collapse
in the same setting studied by Dohmatob, Feng, and Kempe (2024). Formally, assuming X has full
column rank, T ≥ d+ 2 (under-parameterized), and X⊤X is invertible, Gerstgrasser et al. (2024)
take the ridgeless iterative fitting scheme:

ŵk = X̃†
kỸk, Ŷk = Xŵk−1 + Ek, Ek

i.i.d.∼ N (0, σ2IT )

where A† = (A⊤A)−1A⊤ is the Moore-Penrose pseudo-inverse and accumulation is applied via

Ỹ ⊤
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k−1; Ŷ
⊤
k ], Ỹ1

∆
= Ŷ1, X̃⊤

k = [X̃⊤
k−1; X̂

⊤
k ], X̃1

∆
= X̂1

for all k ≥ 2. Note that this is comparable to the ridgless analog of Dohmatob, Feng, and Kempe
(2024) with T0 = · · · = Tg = T and σ2

0 = · · · = σ2
g = σ2. In this setting, Gerstgrasser et al. (2024)

find that

ŵn = w∗ +X†

(
n∑

i=1

Ei

i

)
(4)

and if Σ = Id meaning the features are isotropic,

EReplace
test =

σ2d

T − d− 1
· n (5)

EAccum
test =

σ2d

T − d− 1

(
n∑

i=1

1

i2

)
≤ σ2d

T − d− 1
· π

2

6
(6)

Unlike the linear test error (5) the replace scheme, recovering (3) in the isotropic case, the accumula-
tion scheme (6) yields bounded test error, by the famous Basel problem. We proceed with our own
simulation of this phenomenon.

(a) Comparison of Aggregation Methods (b) Accumulation Saturates the Theoretical Bound

Figure 6: Variance Ratio (ARE) over Iterative Training Generations

In Figure 6b, we see that the ratio of empirical variances from the k-th to 1st generation across 104
trials limits to π2/6, as predicted by (6). In Figure 6a, we simulate various accumulation strategies:
“aug" being the classical accumulation, “sub" being the sub-sample procedure (Gerstgrasser et al.,
2024) of sampling n of the n · k samples in Ỹk at the k-th generation, and “sub-repl" being the
previous procedure with replacement. Figure 6a suggests that “sub" and “sub-repl" have convergent
variance ratios with higher limiting variance compared with the accumulation procedure, which
confirms a claim of Dey and Donoho (2024).

6



4.2 Generative Image Models

Motivated by their theoretical results for regression, Gerstgrasser et al. (2024) empirically analyze
the generative image setting, particularly variational auto-encoders (VAE) on the CelebA dataset.

(a) AE (b) VAE

Figure 7: A Diagram of a Classical and Variational Auto-Encoder

As pictured in Figure 7a, an auto-encoder (AE) is a generative model, typically composed of two
sequentially coupled dense networks. These networks, called the encoder and decoder, are trained to
compress input data to an intermediate vector in latent space by back-propagating a reconstruction
loss of the input data with the final output data throughout the coupled network. A variational
auto-encoder (Kingma, 2013) adds a probabilistic parametrization of the latent space, Rd, such
that each forward pass of the network samples a fresh ϵ ∼ N (0, Id) and constructs a probabilistic
latent vector z = µ + σϵ. The VAE trains via reconstruction loss and an added Kullback-Leibler
divergence term, computed via the reparameterization trick (Kingma, 2013). Being arguably the
simplest generative setting, Gerstgrasser et al. (2024) find that the accumulation scheme mitigates
model collapse.

Figure 8: VAE Degradation: Replacement (Left), Accumulation (Middle), Baseline (Right)

Compared to the complete mode collapse in the replacement scheme, Figure 8 shows that the
accumulation strategy considerably maintains diversity, though it still suffers degradation with respect
to a baseline VAE training run. Gerstgrasser et al. (2024) find that the empirical test loss under the
accumulation strategy still increases approximately linearly, though at a much slower rate than that of
replacement. We confirm this with our own VAE simulations on the MNIST dataset. We simulate
VAE, with both data schemes, across 7 generations of iterative training with 10 training epochs per
generation. Figure 9 compares the visual degradation of each handwritten digit over generation
for each data scheme, and Figure 10 records the training and test loss for each scheme across each
iterative generation. We also simulate an AE via a similar configuration, with Figure 11 recording the
respective training and test loss.
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(a) Replacement (b) Accumulation

Figure 9: Visual Degradation of VAE on MNIST across Iterative Training

(a) Train Loss (b) Test Loss

Figure 10: Training and Test Loss of VAE across Iterative Generations

(a) Train Loss (b) Test Loss

Figure 11: Training and Test Loss of AE across Iterative Generations

Both Figures 10b and 11b confirm the hypothesis of Gerstgrasser et al. (2024) that accumulation
does not prevent collapse in such settings, but merely slows it. Interestingly, we also find that in both
Figures 10a and 11a, training error increases across generation in the replacement scheme while
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it decreases across generation in the accumulation scheme. We have yet to find an intellectually
satisfying resolution to this observation.

4.3 Universality

While model collapse does not seem to hold in the generative image setting, Dey and Donoho (2024)
have recently universalized the π2/6 pathway from (6) to the logistic model via proof of the following
general tool. First, consider the following class of iterative fitting algorithms.

Algorithm 1 Iterative Model Training by Synthetic Data Augmentation (Dey and Donoho, 2024)

Require: Positive integers dX , dY , dη, dΘ; parametric generative probability model {p(·|η) : η ∈
Rdη} defined on RdY ; function η : RdX × RdΘ → Rdη .

1: Start with a dataset Z1 = {(X1,1, Y1,1), · · · , (X1,n, Y1,n)} where X1,i ∈ RdX and Y1,i ∈ RdY

for each 1 ≤ i ≤ n.
2: for each generation G ≥ 1 do
3: Estimate θ̂G from ZG.
4: Generate XG+1 = {XG+1,1, · · · , XG+1,n}.
5: Generate new YG+1 = {YG+1,1, · · · , YG+1,n} with YG+1,i ∼ p(·|η(XG+1,i, θ̂G)) indepen-

dently for each 1 ≤ i ≤ n.
6: Set DG+1 = {(XG+1,1, YG+1,1), · · · , (XG+1,n, YG+1,n)}.
7: Augment the existing data corpus with the newly generated data: ZG+1 = ZG ∪ DG+1.
8: end for

With respect to Algorithm 1, Gerstgrasser et al. (2024)’s original linear regression setting is simply
a special case with a particular p(·|η) and an estimator θ̂G that weights all members of ZG equally.
Consider any iterative model training algorithm of the form in Algorithm 1 that satisfies the following
assumptions.

1. Suppose that XG,1, . . . , XG,n
i.i.d.∼ H such that H is free of G and has all finite moments.

2. Suppose that for each G ≥ 1, given feature XG,i, which may be some transformation of
the raw feature vector, the response-generating distribution p(·|η(XG,i, θ)) comes from the
exponential family with natural parameter η(XG,i, θ) ≡ XG,iθ and sufficient statistic T (·)
such that

p(·|η(XG,i, θ)) ≡ exp(θ⊤X⊤
G,iT (y)−A(XG,iθ))h(y)

and A satisfies certain regularity conditions.

3. Suppose that for each G ≥ 1, θ̂G is asymptotically approximately linear (AAL).

Then, define the following.

Wn,T (G) =
1√
n

n∑
i=1

X⊤
G,i(T (YG,i)−∇A(XG,iθ0)), Wn,Θ(G) =

√
n(θ̂G − θ0) (7)

Consider a reference distribution Pref such that XG,i
i.i.d.∼ H and YG,i|XG,i ∼ p(·|η(XG,i, θ0))

under Pref . Then, under Pref ,

(Wn,T (g),Wn,Θ(g))
G
g=1

d−→ (W ref
T (g),W ref

Θ (g))Gg=1 (8)

where (W ref
T (g),W ref

Θ (g))Gg=1 are jointly mean zero Gaussians. Further,

(Wn,T (g),Wn,Θ(g))
G
g=1

d−→ (WT (g),WΘ(g))
G
g=1 (9)

where (WT (g),WΘ(g))
G
g=1 is a sequential Gaussian process such that

WT (g) = W ref
T (g) = E0[X

⊤∇2A(Xθ0)X]WΘ(g − 1)

WΘ(g) ∼ Pref (·|W ref
T (g) = WT (g) · · ·W ref

T (i) = WT (i) · · ·W ref
T (1) = WT (1)) (10)
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In many machine learning settings, the conditions described above are broad enough to relate a
iterative model training algorithm of interest to an analogous Gaussian process, which Dey and
Donoho (2024) argues is easier to analyze. With this tool, Dey and Donoho (2024) re-derive (5)
and (6) while generalizing the π2/6 bound to the logistic model with limited additional effort. The
authors also support the claim that the variance ratio for the accumulation method outperforms the
subsample method which outperforms the replacement method, as aforementioned in Figure 6a.

As for the generative setting, while the classical AE yields a response-generating distribution in the
exponential family, a similar statement for a VAE in full generality is nontrivial given the introduction
of a fresh ϵ ∼ N (0, 1) in the forward pass. Conditions aside, it is also unclear whether the process
in (10) can be manipulated to achieve test error bounds in the generative case. Further, even if
convergence is proven via this universality, by Figures 10 and 11, it may be the case that constant
factors make model collapse detrimental even if its effects are bounded in the generational limit.

5 Discussion

While the proof and technical details of the above universality tool are beyond the scope of this work,
Dey and Donoho (2024) published a pre-print of this technique on October 30th, 2024, which was
mere days after this manuscript was underway! We hope that this recent development in the field
inspires future work on the boundaries of model collapse.

We acknowledge that our empirical study is limited due to computational constraints, particularly in
the generative setting. For the accumulation scheme, each generation doubles the available training
data, which for Figure 9, become unsustainable beyond the 7-th generation on a single MacBook
Pro in a reasonable timescale. Parties with additional computational resources are encouraged to
explore concrete, experimental generative models beyond auto-encoders. While (Dohmatob, Feng,
Subramonian, et al., 2024) show model collapse in the self-consuming setting for large language
models under certain regimes, exploring this setting under accumulation as well as the extent of the
universality claim of Dey and Donoho (2024) is a worthy pursuit in the authors eyes.

While most of the accumulation strategies discussed treat each piece of data equally, recent work
on faulty verifiers for distinguishing real and synthetic data have shown promise in substantively
improving test performance (Feng et al., 2024). Along these lines, synthetic watermarking (Wenger,
2024) has also demonstrated efficacy. However, watermarks are unstable and removable (Y. Hu et al.,
2024), and implementing a universal watermarking scheme across company lines will likely be a
logistical nightmare.

Regardless, any combination of these ideas is a relevant subject of activate research, and we look
forward to future work on mitigating data pollution to ensure a welcoming environment for future
models in training.
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